Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.

Identifieur interne : 000271 ( Main/Exploration ); précédent : 000270; suivant : 000272

MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.

Auteurs : Jie Hou [République populaire de Chine] ; Huimin Xu [République populaire de Chine] ; Di Fan [République populaire de Chine] ; Lingyu Ran [République populaire de Chine] ; Jianqiu Li [République populaire de Chine] ; Shuang Wu [République populaire de Chine] ; Keming Luo [République populaire de Chine] ; Xin-Qiang He [République populaire de Chine]

Source :

RBID : pubmed:32604464

Abstract

Secondary growth is a key characteristic of trees, which requires the coordination of multiple regulatory mechanisms including transcriptional regulators and microRNAs (miRNAs). However, the roles of microRNAs in the regulation of secondary growth need to be explored in depth. Here, the role of miR319a and its target, PtoTCP20, in the secondary growth of Populus tomentosa stem was investigated using genetic and molecular analyses. The expression level of miR319a gradually decreased from primary to secondary growth in P. tomentosa, while that of PtoTCP20 gradually increased. MiR319a overexpression in seedlings resulted in delayed secondary growth and decreased xylem production, while miR319a knockdown and PtoTCP20 overexpression promoted secondary growth and increased xylem production. Further analysis showed that PtoTCP20 interacted with PtoWOX4a and activated PtoWND6 transcription in vitro and in vivo. Our data show that PtoTCP20 controls vascular cambium proliferation by binding to PtoWOX4a, and promotes secondary xylem differentiation by activating PtoWND6 transcription, thereby regulating secondary growth in P. tomentosa. Our findings provide insight into the molecular mechanisms underlying secondary growth in trees.

DOI: 10.1111/nph.16782
PubMed: 32604464


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.</title>
<author>
<name sortKey="Hou, Jie" sort="Hou, Jie" uniqKey="Hou J" first="Jie" last="Hou">Jie Hou</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Huimin" sort="Xu, Huimin" uniqKey="Xu H" first="Huimin" last="Xu">Huimin Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shuang" sort="Wu, Shuang" uniqKey="Wu S" first="Shuang" last="Wu">Shuang Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32604464</idno>
<idno type="pmid">32604464</idno>
<idno type="doi">10.1111/nph.16782</idno>
<idno type="wicri:Area/Main/Corpus">000223</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000223</idno>
<idno type="wicri:Area/Main/Curation">000223</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000223</idno>
<idno type="wicri:Area/Main/Exploration">000223</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.</title>
<author>
<name sortKey="Hou, Jie" sort="Hou, Jie" uniqKey="Hou J" first="Jie" last="Hou">Jie Hou</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Huimin" sort="Xu, Huimin" uniqKey="Xu H" first="Huimin" last="Xu">Huimin Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shuang" sort="Wu, Shuang" uniqKey="Wu S" first="Shuang" last="Wu">Shuang Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Secondary growth is a key characteristic of trees, which requires the coordination of multiple regulatory mechanisms including transcriptional regulators and microRNAs (miRNAs). However, the roles of microRNAs in the regulation of secondary growth need to be explored in depth. Here, the role of miR319a and its target, PtoTCP20, in the secondary growth of Populus tomentosa stem was investigated using genetic and molecular analyses. The expression level of miR319a gradually decreased from primary to secondary growth in P. tomentosa, while that of PtoTCP20 gradually increased. MiR319a overexpression in seedlings resulted in delayed secondary growth and decreased xylem production, while miR319a knockdown and PtoTCP20 overexpression promoted secondary growth and increased xylem production. Further analysis showed that PtoTCP20 interacted with PtoWOX4a and activated PtoWND6 transcription in vitro and in vivo. Our data show that PtoTCP20 controls vascular cambium proliferation by binding to PtoWOX4a, and promotes secondary xylem differentiation by activating PtoWND6 transcription, thereby regulating secondary growth in P. tomentosa. Our findings provide insight into the molecular mechanisms underlying secondary growth in trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32604464</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16782</ELocationID>
<Abstract>
<AbstractText>Secondary growth is a key characteristic of trees, which requires the coordination of multiple regulatory mechanisms including transcriptional regulators and microRNAs (miRNAs). However, the roles of microRNAs in the regulation of secondary growth need to be explored in depth. Here, the role of miR319a and its target, PtoTCP20, in the secondary growth of Populus tomentosa stem was investigated using genetic and molecular analyses. The expression level of miR319a gradually decreased from primary to secondary growth in P. tomentosa, while that of PtoTCP20 gradually increased. MiR319a overexpression in seedlings resulted in delayed secondary growth and decreased xylem production, while miR319a knockdown and PtoTCP20 overexpression promoted secondary growth and increased xylem production. Further analysis showed that PtoTCP20 interacted with PtoWOX4a and activated PtoWND6 transcription in vitro and in vivo. Our data show that PtoTCP20 controls vascular cambium proliferation by binding to PtoWOX4a, and promotes secondary xylem differentiation by activating PtoWND6 transcription, thereby regulating secondary growth in P. tomentosa. Our findings provide insight into the molecular mechanisms underlying secondary growth in trees.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Huimin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ran</LastName>
<ForeName>Lingyu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianqiu</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Shuang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Keming</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4928-7578</Identifier>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Qiang</ForeName>
<Initials>XQ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1755-008X</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31570581, 31800504</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016YFD0600103</GrantID>
<Agency>National Key Research and Development Program of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tomentosa </Keyword>
<Keyword MajorTopicYN="N">PtoTCP20 </Keyword>
<Keyword MajorTopicYN="N">cambium</Keyword>
<Keyword MajorTopicYN="N">miR319a</Keyword>
<Keyword MajorTopicYN="N">secondary growth</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32604464</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16782</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Axtell MJ, Bowman JL. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13: 343-349.</Citation>
</Reference>
<Reference>
<Citation>Carlquist S. 2001. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Berlin, Germany: Springer.</Citation>
</Reference>
<Reference>
<Citation>Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465: 316-321.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146: 368-376.</Citation>
</Reference>
<Reference>
<Citation>Chen S, Songkumarn P, Liu J, Wang GL. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150: 1111-1121.</Citation>
</Reference>
<Reference>
<Citation>Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL. 2006. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Molecular Plant Pathology 7: 417-427.</Citation>
</Reference>
<Reference>
<Citation>Curaba J, Singh MB, Bhalla PL. 2014. miRNAs in the crosstalk between phytohormone signaling pathways. Journal of Experimental Botany 65: 1425-1438.</Citation>
</Reference>
<Reference>
<Citation>Dhaka N, Bhardwaj V, Sharma MK, Sharma R. 2017. Evolving tale of TCPs: new paradigms and old lacunae. Frontiers in Plant Science 8: 479.</Citation>
</Reference>
<Reference>
<Citation>Dong J, Sun N, Yang J, Deng ZG, Lan JQ, Qin GJ, He H, Deng XW, Irish VF, Chen HD et al. 2019. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis. The Plant Cell 31: 1155-1170.</Citation>
</Reference>
<Reference>
<Citation>Du J, Miura E, Robischon M, Martinez C, Groover A. 2011. The Populus class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS ONE 6: e17458.</Citation>
</Reference>
<Reference>
<Citation>Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140: 2224-2234.</Citation>
</Reference>
<Reference>
<Citation>Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137: 767-774.</Citation>
</Reference>
<Reference>
<Citation>Fan D, Ran LY, Hu J, Ye X, Xu D, Li JQ, Su HL, Wang XQ, Ren S, Luo KM. 2020. miR319a/TCP module and DELLA protein regulate synergistically trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytologist 227: 867-883.</Citation>
</Reference>
<Reference>
<Citation>Fisher K, Turner S. 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Current Biology 17: 1061-1066.</Citation>
</Reference>
<Reference>
<Citation>Gietz RD, Schiestl RH. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253-263.</Citation>
</Reference>
<Reference>
<Citation>González-Grandío E, Cubas P. 2015. TCP transcription factors: evolution, structure, and biochemical function. In: Gonzalez DH, ed. Plant transcription factors: evolutionary, structural, and functional aspects. Amsterdam, the Netherlands: Academic Press, 139-151.</Citation>
</Reference>
<Reference>
<Citation>Groover A, Robischon M. 2006. Developmental mechanisms regulating secondary growth in woody plants. Current Opinion in Plant Biology 9: 55-58.</Citation>
</Reference>
<Reference>
<Citation>Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. 2008. The Vienna RNA websuite. Nucleic Acids Research 36: W70-W74.</Citation>
</Reference>
<Reference>
<Citation>Hawker NP, Bowman JL. 2004. Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiology 135: 2261-2270.</Citation>
</Reference>
<Reference>
<Citation>Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13.</Citation>
</Reference>
<Reference>
<Citation>Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proceedings of the National Academy of Sciences, USA 105: 15208-15213.</Citation>
</Reference>
<Reference>
<Citation>Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. 2010. WOX4 promotes procambial development. Plant Physiology 152: 1346-1356.</Citation>
</Reference>
<Reference>
<Citation>Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K. 2010. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiology 30: 1599-1605.</Citation>
</Reference>
<Reference>
<Citation>Kidner CA, Martienssen RA. 2005. The developmental role of microRNA in plants. Current Opinion in Plant Biology 8: 38-44.</Citation>
</Reference>
<Reference>
<Citation>Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signaling. Nature Communication 5: 3504.</Citation>
</Reference>
<Reference>
<Citation>Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRICLEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22: 3574-3588.</Citation>
</Reference>
<Reference>
<Citation>Kubo M. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19: 1855-1860.</Citation>
</Reference>
<Reference>
<Citation>Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215: 642-657.</Citation>
</Reference>
<Reference>
<Citation>Larson PR. 1975. Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy. American Journal of Botany 62: 1084-1099.</Citation>
</Reference>
<Reference>
<Citation>Larson PR. 1994. Defining the cambium. In: Larson PR, ed. The vascular cambium: development and structure. Berlin, Germany: Springer, 33-97.</Citation>
</Reference>
<Reference>
<Citation>Li S, Zachgo S. 2013. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. The Plant Journal 76: 901-913.</Citation>
</Reference>
<Reference>
<Citation>Li Z, Li B, Shen WH, Huang H, Dong A. 2012. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. The Plant Journal 71: 99-107.</Citation>
</Reference>
<Reference>
<Citation>Liu L, Ramsay T, Zinkgraf M, Sundell D, Street NR, Filkov V, Groover A. 2015. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus. The Plant Journal 82: 887-898.</Citation>
</Reference>
<Reference>
<Citation>Lloyd G, McCown B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. International Plant Propagator’s Society 30: 421-427.</Citation>
</Reference>
<Reference>
<Citation>Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L et al. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proceedings of the National Academy of Sciences, USA 110: 10848-10853.</Citation>
</Reference>
<Reference>
<Citation>Lu S, Sun YH, Rui Shi, Clark C, Li LG, Chiang VL. 2005. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186-2203.</Citation>
</Reference>
<Reference>
<Citation>Ma XD, Ma JC, Fan D, Li CF, Jiang YZ, Luo KM. 2016. Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Scientific Reports 6: 32795.</Citation>
</Reference>
<Reference>
<Citation>Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15: 31-39.</Citation>
</Reference>
<Reference>
<Citation>Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19: 270-280.</Citation>
</Reference>
<Reference>
<Citation>Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2005. The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell 17: 2993-3006.</Citation>
</Reference>
<Reference>
<Citation>Muraro D, Mellor N, Pound MP, Help H, Lucas M, Chopard J, Byrne HM, Godin C, Hodgman TC, King JR et al. 2014. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. Proceedings of the National Academy of Sciences, USA 111: 857-862.</Citation>
</Reference>
<Reference>
<Citation>Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106: 22534-22539.</Citation>
</Reference>
<Reference>
<Citation>Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, USA 105: 20032-20037.</Citation>
</Reference>
<Reference>
<Citation>Oh S, Park S, Han KH. 2003. Transcriptional regulation of secondary growth in Arabidopsis thaliana. Journal of Experimental Botany 54: 2709-2722.</Citation>
</Reference>
<Reference>
<Citation>Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T. 2011. A NAC domain protein family contributing to the regulation of wood formation in poplar. The Plant Journal 67: 499-512.</Citation>
</Reference>
<Reference>
<Citation>Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature 425: 257-263.</Citation>
</Reference>
<Reference>
<Citation>Pan J, Huang D, Guo Z, Kuang Z, Li L. 2018. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. Journal of Integrative Plant Biology 60: 4.</Citation>
</Reference>
<Reference>
<Citation>Puzey JR, Karger A, Axtell M, Kramer EM. 2012. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS ONE 7: e33034.</Citation>
</Reference>
<Reference>
<Citation>Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes & Development 16: 1616-1626.</Citation>
</Reference>
<Reference>
<Citation>Robischon M. 2011. Formation of woody biomass is regulated by class III HD ZIP genes. BMC Proceedings 5.</Citation>
</Reference>
<Reference>
<Citation>Robischon M, Du J, Miura E, Groover A. 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155: 1214-1225.</Citation>
</Reference>
<Reference>
<Citation>Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF. 2014. Repression of cell proliferation by miR319-regulated TCP4. Molecular Plant 7: 1533-1544.</Citation>
</Reference>
<Reference>
<Citation>Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. 2008. Control of jasmonate biosynthesis and senescence by miR319a targets. PLoS Biology 6: 1991-2001.</Citation>
</Reference>
<Reference>
<Citation>Sun X, Wang C, Xiang N, Li X, Yang S, Du J, Yang Y, Yang Y. 2017. Activation of secondary cell wall biosynthesis by miR319a-targeted TCP4 transcription factor. Plant Biotechnology Journal 15: 1284-1294.</Citation>
</Reference>
<Reference>
<Citation>Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29: 1585-1604.</Citation>
</Reference>
<Reference>
<Citation>Uberti-Manassero NG, Viola IL, Welchen E, Gonzalez DH. 2013. TCP transcription factors: architectures of plant form. Biomolecular Concepts 4: 111-127.</Citation>
</Reference>
<Reference>
<Citation>Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X et al. 2014. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnology Journal 12: 1132-1142.</Citation>
</Reference>
<Reference>
<Citation>Warthmann N, Das S, Lanz C, Weigel D. 2008. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Molecular Biology and Evolution 25: 892-902.</Citation>
</Reference>
<Reference>
<Citation>Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24: 415-427.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Elo A, Helariutta Y. 2011. Arabidopsis as a model for wood formation. Current Opinion in Biotechnology 22: 293-299.</Citation>
</Reference>
<Reference>
<Citation>Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X. 2015. MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiology 169: 2539-2552.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Demura T, Ye ZH. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18: 3158-3170.</Citation>
</Reference>
<Reference>
<Citation>Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6: 1331-1343.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Pékin</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Pékin">
<name sortKey="Hou, Jie" sort="Hou, Jie" uniqKey="Hou J" first="Jie" last="Hou">Jie Hou</name>
</region>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<name sortKey="Wu, Shuang" sort="Wu, Shuang" uniqKey="Wu S" first="Shuang" last="Wu">Shuang Wu</name>
<name sortKey="Xu, Huimin" sort="Xu, Huimin" uniqKey="Xu H" first="Huimin" last="Xu">Huimin Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32604464
   |texte=   MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32604464" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020